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L THE DENSEST HEMISPHERE PROBLEM

D. S. Johnson and F. P. Preparata *

Abs tract

Giv5 n a set 1< of n points on the unit sphere sd 
in d-dimensional

Euclidoan space , a hemisphere of sd 
is densest if it contains a largest

subset of K. In this paper we consider the problem of determining a

denses t hemi sphere and present the following complementary results:

- 
(i) a discretized version of the origisnal problem , restated as a

feasibility question, is NP-complete when both n and d are arbitrary ;

(ii) when the number d of d imensions is fixed , there exis ts a pol ynomial

time algori thm which solves the problem with a number of operations

O(rt~~
1
1og a) on the random access machine with unit cost arithmetic operations .

—

. 1
*Bell Laboratories, Murray Hill, New Jersey 07974.

I **Coordina ted Science Laboratory and Department of Electrical Engineering ,
University of Illinois , Urbana , Illinois 61801.
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THE DENSEST HEMISPHERE PROBLEM 

-___________

D. S. Johnson and F. P. Preparata

I. Introduction

This paper is motivated by the following simple geometric problem: let IRd

w be the d-dimensional space and let sd be the sphere of unit radius with center

T at the origin of ~~~ Let K be a set of n points on S’~. Find a hemisphere of

d
S which contains a largest subset of K.

This geometric problem was posed to the authors by H. S. Witsenhausen for

its relevance to app lica tions of statistical analysis and operations research .

It was apparently originated by J. B. Kadane and R. Friedheim as a formalization

of the following situation in political sciences. The coord inates of the points

in K correspond to preferences of a voters on d relevant political issues ; the

axis of the maximizing hemisphere then corresponds to a position on these issues

wh ich is likely to be support~ d by a majority of the voters ~i .

S 1- thinking ~hout such ~ipp lications , I i c more convenient to tormulate

the problem in terms of vectors and inner products. (This will also enable us

to make the useful restriction that ~ll co-ordinates are rationa l numbers , thus

plac ing the problem in the standard discrete form to which computational

comp lexit y arguments can be app l ied.)

To be specific , let ~ = p
1,

P
2 ,~~~•~~ ,P }  be a finite subset o ~~~~~

, where , as

usual , ~ is the set of rationals. There are actually two parallel problems to

cons ider :

CLOSED HEMISPHERE: Find that x such that xl > 0 and

11 P ( K: x • p 0)1 is maximized .

OPEN HEMISPHERE:  Find t ha t  x E Rd 
such that

rP ~: K: x • P -
~ o i l  is maximized .

H :~ ~ (1) Private communication of J. B. Kadane , Dept. of Statistics , Carneg ie-Mellon
University.
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The correspondence with the geometric problem comes from the fact that each

x E Rd determines a hyperplane through the origin fy E Rd : y • x 0) which

partitions S~ into the two open hemispheres fy E S
d
: y • x < o) and

fy € s~: y • x > o}. However , observe that the vector prob lem is in a sense

more general as it allows more than one point along a single ray from the origin.

In this paper we present the following results. Both the CLOSED and OPEN

HEMISPHERE problems are NP-complete if the number of dimensions is not fixed in

advance (Section 2). This means that there can be no polynomial time algorithm

for the general problems unless many other famous intractable problems also

have polynomial time algorithms , an unlikely event [2,3]. Interestingly, however ,

as we shall see in Sections 3 and 4, a densest hemisphere can be algorithmically

determined for fixed d with a number of operations O(n
d I

log n), where the

adopted computation model is the random access machine of [2], with all arithmetic

operation having unit cost.~~
2
~ The latter result not only shows that the problem

can be solved in polynomial time for fixed d, but it also provides an attractive

method for cases in which d is a small integer , say 4 or less.

It may be pointed out that the presented algorithm can be modified to solve

interesting variants of the problem , such as the determination of a densest hemi-

sphere when each point in K has an assigned weight. Another variant of the problem ,

discussed by Reiss and Dobkin [1], is to determine if there is a hemisphere which

contains the entire set K. This variant , however , has been shown to be equivalent

to linear programming and may well be simpler than the general problem

discussed in this paper.

~
2
~For models in which the unit of time is a bit operation and hence arithmetic
operations have costs depending upon the lengths of the operands, the above
running time bound would be multip lied by a factor depending on these lengths ,
but would still be a polynomial.
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3

2 . NP-comp l eteness of the HEMISPHERE problems

In this section we present a proof that CLOSED HEMISPHERE , stated as a

feasibility question , is NP-comp lete . (The cons t ruc t ion  in add i t ion  shows that

the OPEN probl em is NP-comp lete.) The statement of the problem as a feasibility

question goes as follows .

h EMISPHERE: Given positive integers d and M and a finite set K C Q
d
, does there

exist a ~ d 
such that p*j ~ 0 and (~~P ~ K: P P~ oJ � M?

To prove that this problem is NP-comp le te , we must (i) show that it can be

solved non-deterministica lly in polynomial time , and (ii) reduce a known NP-

comp lete problem to it [2,3J . For the former , we observe that if such a P~

exists , another one could be found as the solution to a linear programming prob lem

involving the set [P E K: P~P~ � 0) ,  and hence must have rational coordinates

of polynomiallv bounded length . Thus, all we have to do is guess these coordinates .

To comp l ete the NP-completeness proof b r  HEMISPHERE , we reduce the NP-comp lete

MAXIMUM 2-SATISF lABILITY problem [4] to it.

MAXIMUM 2-SATISF IABILITY (MAX 2-SAT)

G i v e n :  p o s i t i v e  integers  m and N > 1

finite collection of two-element subsets of

x = 
~~~~~~~~~~~~~~~~~~~~~~~~~ 

such that  I S
~~ I 

1’ N.

Question: does there exist a subset X ’ C X w i th  X l fl {x . ,~~.fl = 1

for  1. ~ i m such that  [ c E- J:X’ fl c 
~ 

� N?

S We shall show how to t r a n s f o r m  any i nst ance  of MAX 2-SAT to a c o r r e s p o n d i n g

instance of HEMISPHERE in polynomial time , in such a way that the answer for

the second instance is affirmative if and onl y if the answer for the first

instance is ~lso affirmative .

~

~

_ _ _ _ _  
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In what follows, we shall use a short-hand notation for sets of vectors.

If a,n E Z and n � 0, we let (a)
n stand for the set consisting of the

single n-dimensional vector (“n-tuple”) (a ,a,...,a), all of whose components

are a. If S C Z is a finite set, 5
n 
will represent the set of all possible

n-tuples with components from the set S. (Observe that ( S~~1 = l S l ~ .)
Finally, if U is a set of n-tuples and V is a set of m-tuples , UV is a set

of l u l ’ I v l (n-Im)-tuples of the form (a1,a2,...,a~,b1,b2,...,b )  where

(a1,a2,...,a~) E U and (b 1,b2,...,b ) E V.

We now describe our construction. Suppose m, N, and C- provide an

instance of MAX 2-SAT. Let IC-I = s and t = r1og2(ms~ l)1 . We construct

three sets A , B, and C of d-dimensional vectors, with d = m+l+3t, specified

as follows.

The set A will consist of 2m23t � 2tn(2ms+l)3 vectors, subdivided into

subsets A. and A ., 1. � j  � m , where

A . =(0)
i_l 

(1)(0)
m_i 

(1)[1~~1)
3t and

A. = (Q)
i~l (_ 1)(0)

m i  
(1)[1,_1)

3t
•

The set B will consist of 2m2t � 2m(2ms+l) vectors, subdivided into

subsets B. and B ., 1 � I � m, where

S 
B . = (0)~~~ (4)(0)

m_i 
(_2)(0)

2t
[1,~ 1)

t
, and

= (~)1~l (..4)(~)m~i (~2)(0)2t[1~~1)
t

Finally, the set C consists of one representative for each c € C-, constructed

as follows. Denoting x .1i] x
1 
and x~[_l] = the two-element subset

S c fx 1
[e~~ , xj

[ej]) EC~, with 1 ~ i < j ~ s and ~~~~~ E [1,—I) corresponds

to the vector in C

p = (O)
i l

(4ej)(O)
i~

i(4e .)(O)
m
~J (l)(O)

3t

The instance of HEMISPHERE corresponding to m , N, and C- is then given by 
—

_ _ _ _  

- - - _______
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d = m+l+3t, K = A U B U C, and M = 2m23t + rn.2
t 
+ N.

Clearly, given m, N, and C-, this instance can be constructed in time

polynomial in the parameters m and s (and , clearly, it is an instance of

HEMISPHERE) . Thus, all that remains is to show that the destred X ’ for

the MAX 2-SAT problem exists if and only if the desired ~~* for the

HEMISPHERE problem also exists.

Assume first that the desired X’ exists; that is, there is an

X ’ C [X
l~~

X
I~~

X2I X 2 ) • • • ~~
Xrn~

XrnJ such that ~
X’ fl [x 1~~) I = 1, 1 ~ i ~

and ~
[ c EC- :X’ fl c ~ 

� N. The desired P* = ~~~~~~~~~~~~ is then

given by

1, if l~~~j � rn and x . EX ’

-1, if 1 � j � m and x. E X’
p*= 3

1.5, if j = rn-i-I

0, if rn+2 � j  � d.

The reader may readily “rerify that

I [~ E A: p* • p � Oil = IA I = 2m • 23t

l[~ E B: P* • P 
� oi l = I B I / 2  = rn • and

[p E C: ~~* • p � Ofl � N.

Hence, [P E K = A U B U C: ~~* • P � 0)1 � 2m • 23t + m • + N M, and

so ~* has the desired properties.

Now suppose P* = ~~~~~~~~~~~~ 
is a vector having the desired properties

for d , K, and M. Then it must also obey the following claims, which will lead

us to th: desired X’. For convenience, let A
+ 

~~[P E A : ~~~~~~ � o} and let 
IB and C be analogously defined.

S - i

H i ’
H 1~

— - A- ~ - -- S S ~~ - -
~~~~~~~~~

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ - - ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ -.~--- sAl ., ~~~~ 
- 5~~~~~~~~~ ..
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claim 1. I~
hi > 2m 12 3t _2 2t .

By assumption, M � lA ’~i + IB1 + Ic +I ,  whence

IA+l � M - IB +I - lC +l . But IB
+ l ~~ I B I  = 2ms2t and IC

+
I ~~ I d =

whence IA
+l � (2m .2 3t + mI2t + N) - 2m•2t - s > 2m.23t — mI2t — s.

Since S < ms+l � and m � ms � ~~~~~ the claim follows. ~

Claim 2. p* > 0.m+l

First suppose p*~1 
< 0, and consider the bijection (i.e., the pairing)

f:A -. A defined by 
~~~~~~~~~~~~~~~ 

= (q 1,q2,...,q~), where

-p., l~~~j � m o r m+2 � j � d

• q
~~

=

I, j  = m+l

From the def ini t ion of f we have P + f ( P )  = (0)m (2)(0) 3t for all P E A.

Thus, by our assumption that p*~1 
< 0, we have P* • (P + f(P)) < 0

for all P E A , and hence P* • p � 0 implies P* • f(P) < 0. This means

I[~ 
E A: ~~* • P � oil � I [~ E A: P* • P < O i l ,

a contradiction to Claim 1. Thus we must have p
~~1 

� 0. Suppose

S 

p*~1 
= 0. By the requirements of the HEMISPHERE problem, P* must have

at least one non-zero component , say p~. Let

A ’ . [
~ € A: p

~~
< 0).

By the def in i t ion  of A , we must have I A ’ I  ~ 23t > 2 • 22t Consider

the bijection g:A’ -. A’ defined by ~((P1,P2~ ...~ P~)) =

where

- p . :  1 � j  � d and j  ~ fk ,m+1)

q .  = ~~~ i = k

1: j  = m+l

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - ~~ - . ~ . -~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~



From the definition we have P* . (P+g(P)) = 2
~k 

p~ + 2p~~~1 
= 2

~ k ~~ 
< 0)

since we are assuming p*÷1 
= 0. Thus , at least half of the vectors in

A’ have negative dot products with ~~*, and hence

I[~ 
E A: p* • p � o i l � 

IA I  
- IA’ I/2 < 2m • 23t - 2

2t

in violation of Claim 1 . Thus we must have p
~~ 1 

> 0, as claimed. ~

Claim 3. For all i, 1 � i � m , [P E B . U B .,: p* • P � oil �

For each i , 1 � i � to , consider the bijection

h:B~ U ~~ 
B~ U defined by h((pl,p2,...,pd)) = ~~~~~~~~~~~~~~~~ where

S 

-~~~~., l � j � m o r m + 2 � j � d

p ., j = m+l .

From the definition, we must have P + h (P)  = (0)
to (_ 4)(0) 3t 

for all

P E B . U B1. Thus Claim 2 implies that P* • (P + H ( P ) )  < 0 for all

P E B . U and so l[~ E B1 U B1: ~~* • p � O i l  � lB . U B .I/2 =

proving the claim. ~

For convenience, let T denote the set of integers [m+2+2t, m+3+2t,...,

m+l+3t).

Claim 4. p*÷1 
� E Ip~l .
j E T

Define the set

A” = [p E A: for all i E T, p . p~ 
� o}

and notice that IA ” I = 2m . 22t Consider the bijection k: A” A” defined by

- - 5 5  -5-- - - —
~~ 

_ _ _ _ _ _ _ _

—
~~~~-~

S- S _;=_._ . 
~~~~~~~~~~~~ - - S~~

_ -~ -
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k~~ p1,p 2,.. ‘~ d~~ 
= (q 1,q 2 , . .  . ,q~ ) ,  where

~~~ j = m-1.l or j E T

S I
-

S 
-p . , l � j � m o r m + 2 �j ~~~~m+l+2 t

It  is not difficult to see that for all P € A” , P* (P+k(P)) = 2p~~~1
-2 lp~I
j E T  1

If p~~ , then we would have
j E T

I [ P E A” : P* • P < O)~ > = 2m •

A”  S - _ i

- - - . 
- 

ti i ’  ~ - -~ ? ~o 1 ,d

imp ly

A+
l + IB+I + tC +l < (2m • 23t - 22t~ + m + s = M - m 2

2t 
+ s - N

�M ~~~m . 2 2t
+2

t < M ,

a contradzc~tion. ~

Claim 5. For each i , 1 � i. � m , lp~I 
~

By Claim 2 and the definitions of B . U B . and of index set T, we have
1 1

for all  P E B. U B. that
1 1

• 
~~ 4fp~ f - 2p*~ 1 + ip ”~l .

j E T  ~

By Claim 4, we have E Ip~i , whence p* • p � 
4 t Pt l  

-

j E T

If 4Ip*~ < p* , we would have ~~* • P < 0 for all P E B. U ~~~ . ,  whence
1 m+l 1 1

l [P c B j U
~~

1:P * P� 0) l
~~~

and so by Claim 3

S IA~I + IB~I + Ic~l � I~~l + (m-l)  + I c~iS 

� 2m • 23t + to - + s < M - + S < M ,

_ _ _ _ _ _ _  
_ _ _ _ _  _ _ _
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yet another contradiction . Ii

Claim 6 5 - N.

We must have � M - IA
+( - ( B +I .  Using the inequalit ies

lA ’~i 
A l and ‘ -

~~~~~~ m (by Cla im 3~ we have

I c~ ~ (2m 2~~ + + N) - 2m ‘ 23t 
- m2t N.

Claim 7. The set x’ ~ [x .Le .J:p *=e . IP~ ’ f or I ~ 
S~ is the

1 1 j  1 1

desired subset of X .

The set X ’ is well defined and obeys IX ’flfx .,x1)I 
= 1, 1 � I � to , since by

Claim 5, p # 0, 1 ~~ i ~~
. to . Furthermore , we claim that if P € C is such that

p* • P � 0, then the two element set c E 2- corresponding to P has nonvoid inter-

section with X ’. For suppose that c = [x .[s .],x .[s .j} for s .,s . € fi ,—i }

and 1 � i < j S to . We then have that X ’ fl c = t if and only if s .e. = S . C . = -1.

Now , recalling that c = [x .1 s.] ,x .[s .1) ~~ P =

we have that X ’ fl c = ~ imp lies , by Cla im 5 ,

4s.p~ ÷ 4s.p~ + p* = 4s.e .jp ~~ + 4s .e .jp~ t +
1 1  j j  m+l i i .  i j j  j  m+l

= -4dP~j’I 
+ p

~ )+ p*~1 � -2
~~~+1 + ~ 0, whence we conc lude

that P*p � 0 impl ies  X’  1~ C ~ 0. Thus , oy Claim 6,the set :.‘ s a t i s f i e s  a l l

the conditions of the solution to the MAX 2-SAT problem for given X ,

C-, and N.

From the above arguments we conclude that the desired X’ exists if and only

if the desired P* exis ts . Thus we have successfully reduced MAX IMUM

S 2-SATISFIAB ILITY to HEMISPHERE , and comp leted the proof that the latter is

NP-complete .

~~~ 5-I S ~~~~~~~~~~i
_
~~~~~~~~~

- - -• :~~~~~~ S~~~~ 5-1~~~~~~~1 ~__5 - - -~~~~~
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Our pror~f -also shows that the corresponding problem in which we require

t~~. I t  P* • P ; r r i 5 5’t ~ y exceed 0 is NP-comp lete , as the reader may readily verif y.

IS addit ai~, WE’ nnt-e that the set K we constructed had the following pro,arty:

-
S L c  a~~ P . K , I P I  0 and [

~ I~l : ~ E]R and ~ >0) fl K = [ r} . Thus each

pc~ nt of K cirresponded to a unique ray from the origin of lR
tS 

and hence is

a u~~iqi~e ~— 1 i ~~t on S’s. Therefore the geometric versions of our problems

ar ..~ S~~~J S O  -a~ tc’~~ st as hard as any NP-comp lete problem. One final note on our

constri,~ tj’~rt is the observation that the set K is contained in

and l i c i ’ 5 ~ thr comp lexity of HEMISPHERE does not depend on having arbitrarily

comp licat1- -~i coordinates for the members of K.

‘S. .
.
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3. Algorithms for finding densest hemispheres

In this section we shall Dresent algorithms for the CLOSED and

OPEN HEMISPHERE problems which run in time O(n
d
) when the dimension d is

fixed . In the next section we present an O(n log n) algorithm for the

d = 2 case , which enables us to speed up the algorithm for d 
~ 
2 to

0(fl
d l  

log n).

The simp ler of our two algorithms is the one for the CLOSED

S HEMISPHERE problem , and we shall present it first. The algorithm is defined

recursively, and for this purpose it is convenient to distinguish the points

in K from their coordinates and restate the problem in a slightly generalized

form .

CLOSED HEMISPHERE (CH): Given integers d and D , with I ~ D ~j d,
— a fini te se t v < such that T = [y E ~~

d : y v = 0 for all v EV) is a

D-dimensional subspace of ~~d and a set K = [p 1,p2,. . .,P ) with a map

C :  K’~”T ~ 
~~~~~~

. Find an x E T, with Ix I > 0, which maximizes

A (x) = [p E K: x - c (P) ~ oil

We say that [d, D; V; K, c] is the parameter set of the CH problem .

The closed hemisphere problem , as stated in Section 1, corresponds

to CH with d = D, V = 25 , c(P)  = P for a l l  P E K.

The CH problem is easily solved in two special cases :

(I)  Suppose C: K - T ~~~~ is such that c(P) = 0 (the origin of

for all P E K. Then choosing any x € T will maximize A(x).

T . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
___________________
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The number of steps required to find such an x depends only on

d, so the overall effort required on this case will be O(nd)

even if we have to verify that c(P) = 0 for al l  P € K.

- - 
(II) Suppose D 1 and case (I) does not hold . Then T is a straight

- : line , and we can find a rational basis vector v such that

T = [~av r~ ~ ]R } in time depending only on d. Given V , we can

j restrict our attention to just two candidates for x, v and -v ,

and choose the one with largest value of A (x). Again the

amount of work will  be O(nd), most of the time here spent

evaluating A(x).

• Now suppose that neither (I) nor (II) applies . We shall show

how to reduce the CH problem under consideration to a collection of n or

fewe r MH prob lems in D-l dimensions . Let U = [c(P): P E K) - [0)  and for

each u E U , let H(u)  fy E T: y u 0). The hyperp lanes H(u) partition

j T into convex regions. On the interior of each region A(x) is constant ,

although it may experience a discontinuous increase at region boundaries.

Let A* be the largest value of A(x) for x E T, and, for an ex tremizing x , let

U ’ = [c(p): P E K, c(P) # Q and x c(P) � Q3. Clearly, for some u E U ’ there

exists a y E H(u) with J~l > 0 such that A* A(y); thus, for such a u, the

• I 

0-dimensiona l CH problem can be rep laced by a (D-l)-dimensiona l CH problem

[d’ ,D’; V ’; K ’ ,c ’},  whose parameters are so defined

d’ = d , D’ = D - 1, V t = V Ufu), K’ = K, c ’ ( P )  = c (P) - 

c(P).u

Iui

for all P E K. Observe that T’ = fy ~ ~~~~ y . v = ~ for all v E V
t) = H(u),

c ’( P) is mere ly the projection of c(P) on H(u), and, for all x E H(u), we

have x • c ’ (P) x ( c(P) - 
c(P)-.u 

u) = x c(P). Since the proper choice of
Ju l

~~~~~~~~~~~~ _ _ _ _  _  _—55 -•—•‘~~~ _S._’..~~~ ’ ~~~ ~~~~~~~~~ — — -5——- —5—-— ________



u is not known a priori, we must try the described reduction for each

(P) E U. This reduces the given CH problem to a collection of at most

ii CH problems in one less dimensions . We thus obtain a recursive procedure

- - for solving the CH problem in D = d dimensions . The overall running time is

at most O(dn’~) , as can be seen by standard recurrence relation arguments.

With this background , we are now prepared to consider the more

comp lex OPEN HEMISPHERE problem. Here again we shall present a recursive

algori thm , in which a given D-dimensional problem is reduced to a collec-

tion of several (D-l)-d imensional problems . In contrast to the C!! case,

however , the reduced problems of an open hem isphere problem are not

necessarily of the same type as their parent problem . Therefore it is

convenient to de fine the following composite MIXED HEMISPHERE problem .

MIXED HEMISPHERE (MH ): Given integers d and D wi th  1 � D ~ d , a f i n i t e

set v such tha t  T f y  E 1~
1
: y • v = 0 for all v € vJ is a

D-dimensiona l subspace of ]R~~, and a set K = [P 1, P2 , . . ., P )  with maps

c :K -. T fl Qd and s:1( fo ,i}. Find an x E T which maximizes

A ( x ~ = J [p  E K: s(P) = 0 and x c ( P )  � 01

U [p  € K: s (P)  = I and x • c (P )  > 0 ) 1

We say that Ed , D;  V;  K , c , s] is the parameter set of the MH problem .

The open hemisphere problem , as stated in Section 1 , correspond s

to MH with d = D , V = ~~~ , c (P) = P, and s(P) I for all P t K.

The crucial difference between the CLOSED and the MIXED HEMISPHERE

problems lies in the function 5: K -. [0,1) which dicho tomizes the set K ,

and in the fact  tha t  the 0 vector is in the range of al lowable so lu t ions .

L 

~~~~~~ S~~~~ -~~~~- -  - ~~~~~~~~~~~~ ~— - — S - - - S - S- 
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In parallel with the previous discussion of the CII problem , the

NH problem is easily solved in two special cases , both requiring compu-

tational work at most 0(nd):

(i) c:K - T n is such that c(P)  = 0 for a l l  P E K. Then any x =

maximizes A(x) (in particular x = 0 ) .

(ii) i~ = 1 and ( i)  does not hold . Then T = [~ v: -
~ E 1K) , and ‘c can

restrict ourselves to the three candidates - v , v , and Q, choosing

the one wi th  lar gest value of A ( x ) .

S 

We now discuss the reduction when neither (i) nor (ii) apply.

Let U and 11(u), for each u € U, be as previously defined , and let

max [A(x): x E T}.

S 
Lemma 3.1. There exists a u E U and a y € H(u) such that either

(1) A* A(y), or

(2) A* lim A(y + a-u) and s(P) = 1 for  some P E K.
S o~1O

Proof: Suppose (1) does not hold . Then A* must be realized by some x on

the interior R of some closed region R. Since x R - R , we have !xI > 0.

Suppose s(P) = 0 fo r  al l  P C K. Then A ( x )  = J [P C K: x c(P) ~ oi l .

However , note that x C R and u - x > 0 imply u • z ~ 0 for all z C ~~~, by the

definition of R and the continuity of the inner product. This means that
— 

S

for all points y E R, A(y) ~ A(x) = A*, a contradiction of our assumption

that (1) does not hold . Thus there must exist some P E K with s(P) 1, ~•

as claimed .

~~~~~~~~ ç I
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We must now show that , if the extrernizing x is in the interior

R of some region R in the part i tion of T produced by the hyperp lanes

H(u), then x is of the form y + a u , for some u C U, y C H ( u ) ,  and y> 0.

First of all , for any z E R, A( z) = A* . Let F be a face of R; obviously

F C H ( u )  for  some u € U. There is a point x C R which can be expressed

as (y + a u), where y is a point of F (hence y C H(u)) and a is a conveniently

chosen real number . All that remains to be shown is that there is at least one

such u C U which yields a > 0. Let U
F 

= [~ E U • F C H ( u ) ) .  For any

x E R a n d u E U F, u x # 0 .  Suppose that for a l l u E U F, x • u < 0 .

Let R ’ be a region of T that shares F as a boundary with R , and let x ’

be a point on the interior of R ’. For all P C K such that c(P) 
~

c(P) x > 0 if and only if c(P) x ’ > 0 and simi larly c(P) - x = 0 if

and only if c(P) x’ 0. However , by supposition , for all P with

c(P ) C Up,, c (P) x ’ > 0 and c(P) . x < 0. S nce U
F ~ ~~~ , this means that

A(x ’) > A ( x ) ,  a contradiction . Thus, there exists a u C UF 
such that

u • x > 0, that is , x • u = (y + ry u) • u = y ~~~ + a l u l 2 
= rYl u !2 > 0,

and h e n c ea > 0 . J 
S

• This lemma suggests a method for reducing a given D-dimensional

NH problem . Since we do not know the vector u , nor whether (1) or (2) holds,

for each u E U we generate two (D-l)-dimensiona l NH subproblems , corre-

sponding to (1) and (2) respective ly. In this manner , a given D-dimensional

NH problem is replaced by at most 2n (D-1)-dimensiona l MB problems, each

S of which produces a candidate for the solution of the origina l problem.

Specifically , in the hypothesis tha t (1) holds for u, the search

for y corresponds to the following Ml! problem with parameters Ed’ , D’ ; V’ ;

K ’, C ’ , 5 ’J

IS,.

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ • 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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d’ = d , D’ = 0-1 , V 1 = VU fu), K’ = K,

c ’ (P) = c (P) - 
c(P).u 

u for all ~ ~ K ’
Ju l

s’(P) = s(P) for all P C K’ .

In the assumption that (2) holds , the conversion to an NH problem

is a bit more comp licated . In the corresponding reduced NH problem

Cd’ , D’; V ’ ; K’, c ’, s’] we set

c ’(P) c(P) - 
c(P).u 

u for all PC  K’
J u l

The construction of the func tion s’(P), for all P C K , is somewhat more

S delicate. Suppose that in the origina l Ml! problem , P is such that c(P) • u < 0.

If s(P) 0, then P contributes a unit to A(x) if and only if

0 � c (P )  • x = c(P) • (y + au)  = c ’( P )  . y +ac(P) u. As long as c ’(P)  y > 0

there will exist an a > 0 such that this inequality holds. However , if

c ’( P )  • y � 0 we w i l l  have c ( P )  x < 0 and the inequal i ty  wi l l  f a i l .  Thus
d S

we can only let P contribute a unit to A’(x), the maximum in the reduced prob-

lem,if c’(P) y > 0, and so we must set s’(P) = 1. A similar analysis for

the other cases leads to the following set of rules for determining the

function 5 ’ :

0 if s ( P~ = 0 and c(P)  • u

or i f  s (P )  = 1 and c(P)  u > 0
• 

s’(P) =
- 

— j I i f  s (P)  = 0 and c(P) u < 0

or if s(P) = I and c (P)  u - 0

_ _ _  5 5 
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Let v 1( u)  and y 2 (u)  be the so lu t ions  to the ‘-~ i rob l cm 3 cI -4rr esp olld Lng

to u U fc~r case (1) and for case (2), respectively. Th’:n the cand idates

f or x ~ T such that A(x) A* corresponding to v
1
(u) and v

2
(u) are given ~:s

fo l lows .

I The case (1 ) cand ida te is simply  x
1
(u ) = y

1
(u). in case (2) the

s i t u a t i o n  is somewhat more comp licated . Here the cand idate  w i l l  he of the

I form y
2
(u) + au , and we mus t  choose a c a r e f u l ly ,  so as to insure  t h a t

I y7(u) c(P) > 0 imp lies  (y 2 (u)  + au) c(P) > 0 fo r  a l l  P (
~ K. But this is

f a i r l y  s t r a i g h t f o r w a r d . Let V = [P C K: y2 (u )  • c(P) > 0 and u c (P )  < 0) .

J The desired imp l ica t ion  w i l l  hold if y 2 (u)  . c( P ) > - au . c(P) for all

P J V , so i t  w i l l  s u f f i c e  to choose a = € / F , where e = mm [y
2
(u ’ c(P): p ~ vi

I and ~ = 1 + max 1 1u  • c ( P ) J :  P C v ) .

A solution to the original Ml! problem can thus , by Lemma 3.1 ,

be found among the set [x
1
(u): u C u) U [x 2(u): u C U and s ( P )  = 1 for  some P C K ) ,

and hence involves solving at most 2n MH problems of one less dimension . W e

thus obta in a s tra ightforward recursive procedure , whose running tine can

easily be determined to be at most

-
S d- 1 d

- T(n ,d)  = 0(2  dn )

whe re T(n ,d) is the time required to solve an MB problem with I K I  = n and

of dimension D = d .  For fixed d > I , th i s  is simp ly O ( n d ) .

We migh t point ou t  that there is a wide range of possibilities

for improvements by constant factors . In particular , there is much dup lica-

tion of sub problems as it stands now , since all permutations of a set of d

elements of K will yield d istinct subproblems even though mhny of these

~

5- __S_ _ i~ 5_ -5_ -— ~~~~~—‘ -- -_- -~~_ .—---- •_____
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sub pr oh l em s ~re identical . Furthermore , one could sav seine effort by

combining two points of K when their projections coincide or lie on the same

ray from the origin of ~ d 
We leave the details of this fine tuning to

those interested in actually imp lement ing the algor ithm .

We content ourselves with the presentation of a major improvement ,

which reduces the time to 0(fl
d l 

log n), as explained in the next section.

4. An improved densest hemisphere algorithm for two dimensions

In the preceding algorithms , we have for s imp licity assumed that the

deepest possible level of recursion occurs for dimension D = I. This also

establishes the base of induction O (nd ) for the estimate of the running time .

We now describe an 0(nlogn) + 0(dn) algorithm for the MIXED HEMISPHERE

problem w ith D = 2 which could be used at the deepest level of recursion ,

thereby speeding up the general algorithm for arbitrary d imension by a factor

of a t leas t n/ logn. A similar improvement for the CLOSED HEMISPHERE problem

¶ can be obtained in much the same way.

Let [2 ,d; V; K, c , si be an Ml! problem. Then T is a plane and

[c(p): P C K) is a set of points in this plane: with a total work 0(nd)

we can express these points in terms of two coordinates in T. The solution to

- ‘~ir problem is eirb er 0 or a poin t y E T with J y J > 0. As before , set

= ~c(P): P C K and c(P) ~ 0], and for each u C U let H(u) = fy C T: y • U O~ .

We observe that in this case each H(u) is a straight line through the origin

in the p lane T. Let us think of each of these lines as two directed rays

leaving the origin in opposite directions . Pick an orientation for the 
S

plane T, and label the two rays making up H(u) as R (u) and R
+(u), where

p.
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t1’~~~C( rays  ~~~~~~~ 
) , ~ I - m d  R ( u )  w i l l  h~ r.neuI;r~~ered ~n j~~;~ ~~~~~~~~

if ~ie s t a r t  at R (u)  and proceed in a counterclockwise direccion (~~~-~~~~. S

ligure U.

ii

u ,A (u)

S 
/5

~ -A ’ 0

,,1~~

I~~(u )

/
/

Figure 1. The orientation of R (u) and R
+
(u) 1 .

The rays in H = fR (u), R
+(u): ~i C uJ divide the plane T into ;;r~~~~ shaped

regions. To find the boundaries of these regions , we need onl y 4oit arid

t~clahel the elements of H as r0,r2,...,r2 ~~~
, where s = lu l , so that if we /tart

at r
3 

and proceed in a counterclockwise direc tion, we would r~~-t each r . ~~ ~u~~’

until we get back to r
0 
(see Figure 2). One way to accomplish this sorting

~‘ou1d be to compute polar angles 0(r), 0 0(r) < 21T , for each r ~: H relative

to some chosen r
0 
with 0(r0

) set to 0, and then :ort the values of e(r). Tbi~

l.a:; the apparent drawback that some of the 0(r)’s may be irrational nurnhe ,~~ .

Fortunately, it is possible to determine if 0(r) < O(r’) in constant t i~ i’ .

wi thout actually computing the values of 0• Let r
0 

= R (u
0
) for some i’ (

~ U.

and suppose that r , r’ are distinct elements of H. Then the relationship

he ’ween 0(r ) and ~~~ ‘ )  is specified as follows . 

~~~--~~
-
~~~~~~~~ _ _ _ _ __ _ _ _ _
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/

t
4 - 

~~~~~~~~~~~~~~ ~
- 

- 
1

S 
- 

W /4 / - -5 

/ ~5

r
5 r

6

Figure 2. The regions of T (for l v i 4 ) ,

Choose u , u ’ C U such tha t r E [R (u), R
+
(u)) and r ’ (

and let the coordinates of u and u ’ in T be (a ,b)  and (a ’ ,b ’ ) , respc’ctivel y .

Select points p and p ’ in r and r ’, respec tively, as follows :

(b ,-a), if r = R ( u)

~(-b ,a), if r = R+(u)

((b’,—a ’), if r = R (u’)

if r = R+(u t)

S ince r and r ’ are dis tinc t, we must have either 9(r) > 8(r’) or 8(r) < 9(r ’).

If p u
0 

�- 0 and p ’ u
0 

< 0, then 9(r) <~ 8(r ’).

If p • u
0 

< 0 and p ’ • u
0 

0, then O (r) > 8( r ’ ) .

If p • u
0 p ’ ‘ u

0 
= 0 then, if r = r

0 
we have 8(r) ~— G(r ’),

S otherwise 8(r) > e(r ’).

If none of the above hold , then 0 ( r )  > 0(r ’ ) unless

1) r = R ( u ) and p ’ u > O , or

ii) r = R
+
(u) and p l .u ~~~ 0.

r-~ 
-
~~~~~~--

_ _ _ _ _ _
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Thus , using standard sorting algorithms we can determine our desired

order ing r0,r1,.,.,r73 1 of H in time O (nlogn). Let W . be the reg ion bounded

by r . and r . . As before, we note that A (x) will be constant on each
1 i+l(mod2s)

of the convex regions W ., with poss ible discontinuities on the boundaries.

There arc thus e~sentially 4s+l different cand idates for an x which maximizes

A(x), one for each ray r ., one for each region W~ , and one for 0. To be

specific , choose a non-zero point p. in each ray r
~~
, 0 � i � 2s-l . Then

q . = + 

~i+l(mod2s) 
will be a point in W

i, 
0 � i ~ 2s-l. The value of

A(x ) mus t be maximi zed by some point in fp.,q .: 0 � i ~ 2s-l) = C.

14~ I~~~jfl evalua te A’O) a~ d ~
‘S ( ~~~~~~~) ~n t ime O(n~~;. The remainder c~ t h i ~

values can be computed in time O(nd) overall, as follows. Suppose A(p .)

has been computed for some i, 0 1 < 2s-l. Then

A(qA = A(p.) +I[~ C K: c(P) ~ 0, s(p) = 1, and R (c(P)) = r .J I
S 

- l[~ 
C K: c (P) 

~ 0, 
s (p )  = 0, and R~ (c(P)) = r.)!.

If A(q~ ) has been computed for some i, 0 � i < 2s-l , then
S 

A( P~~ 1) A(q .) + l [~ 
C K: c(P) ~ 0, 

s(P ) = 0, and R ( c (P)) = r
~ +1

}
~

- [p C K, c(P ) ~ 0, s(P) = 1, and R~ (c (P )) = r .~~1fl

S ince each P 
~ K is encountered at most twice in this procedure , the overall

time is O (nd). Find ing that x C C with maximum A(x) now requires only 0(n)
time. The total time needed to solve the MH problem with D = 2 is thus 

S

dominated by the time for sor ting H, and is O(nlogn) + O (nd) as claimed .
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Using th iS procedure as the final step in the recursion of Section 3

-
~ S 

thus gives an algorithm for the OPEN HEMISPHERE problem on n points and d

dimensions with running time at most O(d2
d 2

n
d l

logn). The analogous

algorithm for the CLOSED HEMISPHERE problem has running time bounded by

0(dn
~~~

logn).

5. Closing remarks

In this paper we have shown that bo th the c losed and open HEMISPHERE

problems are NP-complete when the number of dimensions d is not fixed in

advance. However , for f ixed d � 2 , we have de scribed algorithms for determin-

ing a densest hemisphere which require a number of operations at most 0(nd~~ log n).

It is wor th pointing out that the described techniques are direc tly

app licable to an interes ting generalization of the problem , in which each

P C K is weighted through a function w: k —- cr~. For instance , in the

WEIGHTED MIXED HEMISPHERE problem , we must seek an x C T which maximizes

A (x) = 1 w(P)
pEW(x)

where W(x) = [p C K: s(P) = 0 and x c(P) � oJ U [P C K: s(P) = I

and x c(P) > 0),

It is easily recognized that the algorithms described in Sections 3 and 4

can be modified to solve this problem , since here again the set

U = [c(P): P C K] - [0) induces a partition of T into p lane-bounded convex

reg ions , in each of which the function A(x) assumes a constant value .

We raise as an open question whether our techni ques can be mod i f ied

to solve the problem of finding a P* whose induced hemispheres partiti on

the  set K most equally.

~~~s . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 
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